
IT 344 Computer Network 5th Semester

1

CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY

CHANDUBHAI S PATEL INSTITUTE OF TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

Subject Name: Computer Networks Semester: 5th (B.Tech)

Subject Code: IT344 Academic Year: 2018-2019

Lab Manual

Basics & Compilation of NS-2

Practical: 1

A.

AIM:

Design simple tcl script for Wired topology of 4 nodes in NS-2 and analyze various tcl parameters

like network nodes, links, queues and topology. Queue Size :- 5 ,Duplex Link, Queue Type Drop

tail

Introduction

The network simulator is discrete event packet level simulator. The network simulator covers a

very large number of application of different kind of protocols of different network types

consisting of different network elements and traffic models. Network simulator is a package of

tools that simulates behavior of networks such as creating network topologies, log events that

happen under any load, analyze the events and understand the network. Well the main aim of our

first experiment is to learn how to use network simulator and to get acquainted with the simulated

IT 344 Computer Network 5th Semester

2

objects and understand the operations of network simulation and we also need to analyze the

behavior of the simulation object using network simulation.

Features of NS2

1. It is a discrete event simulator for networking research.

2. It provides substantial support to simulate bunch of protocols like TCP, FTP, UDP, HTTP and

DSR.

3. It simulates wired and wireless network.

4. It is primarily Unix based.

5. Uses TCL as its scripting language.

6. Otcl: Object oriented support

7. Tclcl: C++ and otcl linkage

8. Discrete event scheduler

Platform required to run network simulator

 Unix and Unix like systems

 Linux (Use Fedora or Ubuntu versions)

 Free BSD

 SunOS/Solaris

 Windows 95/98/NT/2000/XP

Backend Environment of Network Simulator

Network Simulator is mainly based on two languages.They are C++ and OTcl. OTcl is the object

oriented version of Tool Command language.The network simulator is a bank of of different

network and protocol objects. C++ helps in the following way:

 It helps to increase the efficiency of simulation.

 Its is used to provide details of the protocols and their operation.

 It is used to reduce packet and event processing time.

PROGRAMS:

#Create a simulator object

set ns [new Simulator]

#Define different colors for data flows (for NAM)

$ns color 1 Blue

$ns color 2 Red

#Open the NAM trace file

set nf [open out2.nam w]

$ns namtrace-all $nf

IT 344 Computer Network 5th Semester

3

set tr [open out2.tr w]

$ns trace-all $tr

#Define a 'finish' procedure

proc finish {} {

global ns nf tr

$ns flush-trace

#Close the NAM trace file

close $nf

close $tr

#Execute NAM on the trace file

exec nam out.nam &

exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#Create links between the nodes

ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

$ns duplex-link $n2 $n3 1.7Mb 20ms DropTail

#Set Queue Size of link (n2-n3) to 10

$ns queue-limit $n2 $n3 10

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp0 [new Agent/TCP]

$tcp0 set class_ 2

$ns attach-agent $n0 $tcp0

set sink1 [new Agent/TCPSink]

$ns attach-agent $n3 $sink1

$ns connect $tcp0 $sink1

$tcp0 set fid_ 1

IT 344 Computer Network 5th Semester

4

#Setup a FTP over TCP connection

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set type_ FTP

set tcp1 [new Agent/TCP]

$tcp1 set class_ 2

$ns attach-agent $n1 $tcp1

set sink1 [new Agent/TCPSink]

$ns attach-agent $n3 $sink1

$ns connect $tcp1 $sink1

$tcp1 set fid_ 2

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

$ftp1 set type_ FTP

$ns at 0.1 "$ftp1 start"

$ns at 0.2 "$ftp0 start"

$ns at 4.0 "$ftp0 stop"

$ns at 4.5 "$ftp1 stop"

$ns at 5.0 "finish"

#Run the simulation

$ns run

OUTPUT:

IT 344 Computer Network 5th Semester

5

B.

Design simple tcl script for Wired topology of 6 nodes in NS-2 and analyze various tcl parameters

like network nodes, links, queues and topology.

Link Bandwidth Delay Queue Type Queue Size

no-n2 10Mbps 10ms RED 10

n1-n2 10Mbps 10ms RED 10

n2-n3 5Mbps ??? RED ???

n3-n4 10Mbps 10ms RED 10

n3-n5 10Mbps 10ms RED 10

ftp0:

Packet Size: 1000

Rate: 1

Interval: 150

cbr0:
Packet Size: 1500

Rate: 0.05

Interval: 150

Total Simulation Time: 60sec

Tcl Script:

set ns [new Simulator]

$ns color 1 Green

$ns color 2 Red

set nf [open P6_RED.nam w]

$ns namtrace-all $nf

set tf [open P6_RED.tr w]

IT 344 Computer Network 5th Semester

6

$ns trace-all $tf

#Define a 'finish' procedure

proc finish {} {

 global ns nf

 $ns flush-trace

 #Close the NAM trace file

 close $nf

 #Execute NAM on the trace file

exec nam P6_RED.nam &

 exec awk -f DropPacket.awk P6_RED.tr &

 exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 10Mb 10ms RED

$ns duplex-link $n1 $n2 10Mb 10ms RED

$ns duplex-link $n2 $n3 5Mb 10ms RED

$ns duplex-link $n3 $n4 10Mb 10ms RED

$ns duplex-link $n3 $n5 10Mb 10ms RED

#Set Queue Size of link (n2-n3)

$ns queue-limit $n0 $n2 10

$ns queue-limit $n1 $n2 10

$ns queue-limit $n2 $n3 15

$ns queue-limit $n3 $n4 10

$ns queue-limit $n3 $n5 10

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

IT 344 Computer Network 5th Semester

7

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

$ns duplex-link-op $n3 $n4 orient right-up

$ns duplex-link-op $n3 $n5 orient right-down

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp0 [new Agent/TCP]

$tcp0 set class_ 2

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set rate_ 1

$ftp0 set interval_ 150

$ftp0 set type_ FTP

$ftp0 set packetSize_ 1000

set sink4 [new Agent/TCPSink]

$ns attach-agent $n4 $sink4

$ns connect $tcp0 $sink4

$tcp0 set fid_ 1

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n1 $udp0

set sink5 [new Agent/Null]

$ns attach-agent $n5 $sink5

$ns connect $udp0 $sink5

$udp0 set fid_ 2

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set type_ CBR

$cbr0 set packetSize_ 1500

IT 344 Computer Network 5th Semester

8

$cbr0 set rate_ 0.05

$cbr0 set interval_ 150

#Schedule events for the CBR and FTP agents

$ns at 0.1 "$cbr0 start"

$ns at 58.0 "$cbr0 stop"

$ns at 0.2 "$ftp0 start"

$ns at 59.0 "$ftp0 stop"

#Call the finish procedure after 5 seconds of simulation time

$ns at 60 "finish"

puts "CBR packet size = [$cbr0 set packetSize_]"

puts "CBR interval = [$cbr0 set interval_]"

puts "FTP packet size = [$ftp0 set packetSize_]"

puts "FTP interval = [$ftp0 set interval_]"

#Run the simulation

$ns run

IT 344 Computer Network 5th Semester

9

Practical: 2

A.

AIM:

Set the following parameters for Duplex Link:

Link Bandwidth Delay Queue Type Queue Size

no-n2 10Mbps 10ms RED 10

n1-n2 10Mbps 10ms RED 10

n2-n3 5Mbps ??? RED ???

n3-n4 10Mbps 10ms RED 10

n3-n5 10Mbps 10ms RED 10

ftp0:n0

Packet Size: 1000

Rate: 1

Interval: 150

cbr0:n1

Packet Size: 1500

Rate: 0.05

Interval: 150

Total Simulation Time: 90sec

CODE
(Note: - For other queue change name only)

puts -nonewline "Enter Delay : "

flush stdout

set Delay [gets stdin]

puts -nonewline "Enter Queue Size : "

To demonstrate various queuing mechanisms and make comparative analysis of various queuing

techniques. (using trace file) (Droptail, RED,SFQ,FQ,FIFO)

IT 344 Computer Network 5th Semester

10

flush stdout

set QueueSize [gets stdin]

set ns [new Simulator]

$ns color 1 Green

$ns color 2 Red

set nf [open P6_RED_14IT120.nam w]

$ns namtrace-all $nf

set tf [open P6_RED_14IT120.tr w]

$ns trace-all $tf

#Define a 'finish' procedure

proc finish {} {

 global ns nf

 $ns flush-trace

 #Close the NAM trace file

 close $nf

 #Execute NAM on the trace file

 exec nam P6_RED_14IT120.nam &

 exec awk -f DropPacket.awk P6_RED_14IT120.tr &

 exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 10Mb 10ms RED

$ns duplex-link $n1 $n2 10Mb 10ms RED

$ns duplex-link $n2 $n3 5Mb $Delay RED

$ns duplex-link $n3 $n4 10Mb 10ms RED

$ns duplex-link $n3 $n5 10Mb 10ms RED

#Set Queue Size of link (n2-n3)

$ns queue-limit $n0 $n2 10

IT 344 Computer Network 5th Semester

11

$ns queue-limit $n1 $n2 10

$ns queue-limit $n2 $n3 $QueueSize

$ns queue-limit $n3 $n4 10

$ns queue-limit $n3 $n5 10

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

$ns duplex-link-op $n3 $n4 orient right-up

$ns duplex-link-op $n3 $n5 orient right-down

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#Setup a TCP connection

set tcp0 [new Agent/TCP]

$tcp0 set class_ 2

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set rate_ 1

$ftp0 set interval_ 150

$ftp0 set type_ FTP

set sink4 [new Agent/TCPSink]

$ns attach-agent $n4 $sink4

$ns connect $tcp0 $sink4

$tcp0 set fid_ 1

#Setup a UDP connection

set udp0 [new Agent/UDP]

$ns attach-agent $n1 $udp0

set sink5 [new Agent/Null]

$ns attach-agent $n5 $sink5

$ns connect $udp0 $sink5

$udp0 set fid_ 2

set cbr0 [new Application/Traffic/CBR]

$cbr0 attach-agent $udp0

$cbr0 set type_ CBR

IT 344 Computer Network 5th Semester

12

$cbr0 set packetSize_ 1500

$cbr0 set rate_ 0.05mb

$cbr0 set interval_ 150

$ns at 0.1 "$cbr0 start"

$ns at 59 "$cbr0 stop"

$ns at 0.1 "$ftp0 start"

$ns at 59 "$ftp0 stop"

$ns at 60 "finish"

puts "CBR packet size = [$cbr0 set packetSize_]"

puts "CBR interval = [$cbr0 set interval_]"

#Run the simulation

$ns run

B.

AIM:

To demonstrate the use of AWK script with NS2 trace file of scenario A. Find Out Throughput,

Packet delivery ratio, Number Drop Packets for all Queues.

Throughput.awk

BEGIN{

 file_size = 0

 start_time = 0

 finish_time = 0

 got_start_time = 0

 latency = 0

 throughput = 0

 printf("\n Enter the Target Node for Throughput = ");

 getline node < "-"

}

{

IT 344 Computer Network 5th Semester

13

 if($1 == "r" && $4== node){

 file_size += $6

 if(got_start_time == 0){

 start_time = $2

 got_start_time = 1

 }

 finish_time = $2

 }

}

END{

 latency = finish_time - start_time

 throughput = file_size*8/latency

 printf("\n File Size : %d Bytes",file_size)

 printf("\n Start Time : %f sec",start_time)

 printf("\n Finish Time : %f sec\n",finish_time)

 printf("\n Throughput : %f bps \n",throughput)

}

Droprate.awk

BEGIN{

 drop=0

 rec=0

 eq=0

 deq=0

}

IT 344 Computer Network 5th Semester

14

{

 if($1=="d"){

 drop++

 }

 if($1=="r"){

 rec++

 }

 if($1=="+"){

 eq++

 }

}

END{

 printf("\n\t----- DRR Queue ----")

 printf("\nTotal Number of Packet Dropped in Network = %d",drop)

 printf("\nTotal Number of Packet Send in Network = %d",eq)

 printf("\nTotal Number of Packet Receive in Network = %d",rec)

 printf("\nTotal Number of Packet in Network = %d\n\n",drop+rec)

}

AIM:

C

As well as Change the parameters of scenario A in such a way that, packet loss becomes Zero,

having all the parameters fixed except the queue size, and we have to change queue size and

attain minimum packet loss.(For All Queue types) and generate Xgraph for Number of packet

drop in each queue.

CODE

set ns [new Simulator]

$ns color 1 Blue

$ns color 2 Red

$ns color 3 Green

set nf [open P5_14IT120.nam w]

$ns namtrace-all $nf

set tf [open P5_14IT120.tr w]

IT 344 Computer Network 5th Semester

15

$ns trace-all $tf

proc finish {} {

 global ns nf

 $ns flush-trace

 close $nf

exec nam P5_14IT120.nam &

 exit 0

}

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

$ns duplex-link $n0 $n3 5Mb 5ms DropTail

$ns duplex-link $n1 $n3 10Mb 5ms DropTail

$ns duplex-link $n2 $n3 15Mb 5ms DropTail

$ns duplex-link $n3 $n4 7Mb 5ms DropTail

$ns queue-limit $n3 $n4 43

$ns duplex-link-op $n0 $n3 orient right-down

$ns duplex-link-op $n1 $n3 orient right

$ns duplex-link-op $n2 $n3 orient right-up

$ns duplex-link-op $n3 $n4 orient right

$ns duplex-link-op $n3 $n4 queuePos 0.5

set tcp0 [new Agent/TCP]

$tcp0 set class_ 2

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

$ftp0 set type_ FTP

set tcp1 [new Agent/TCP]

$tcp1 set class_ 2

$ns attach-agent $n1 $tcp1

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

$ftp1 set type_ FTP

IT 344 Computer Network 5th Semester

16

set tcp2 [new Agent/TCP]

$tcp2 set class_ 2

$ns attach-agent $n2 $tcp2

set ftp2 [new Application/FTP]

$ftp2 attach-agent $tcp2

$ftp2 set type_ FTP

set sink04 [new Agent/TCPSink]

$ns attach-agent $n4 $sink04

$ns connect $tcp0 $sink04

$tcp0 set fid_ 1

set sink14 [new Agent/TCPSink]

$ns attach-agent $n4 $sink14

$ns connect $tcp1 $sink14

$tcp1 set fid_ 2

set sink24 [new Agent/TCPSink]

$ns attach-agent $n4 $sink24

$ns connect $tcp2 $sink24

$tcp2 set fid_ 3

$ns at 0.1 "$ftp1 start"

$ns at 4.0 "$ftp1 stop"

$ns at 0.1 "$ftp0 start"

$ns at 4.0 "$ftp0 stop"

$ns at 0.1 "$ftp2 start"

$ns at 4.0 "$ftp2 stop"

$ns at 5.0 "finish"

$ns run

IT 344 Computer Network 5th Semester

17

Practical: 3

AIM:

puts -nonewline "Enter Window Size AW1: "

flush stdout

set aw1 [gets stdin]

puts -nonewline "Enter Window Size AW2: "

flush stdout

set aw2 [gets stdin]

set ns [new Simulator]

$ns color 1 Green

$ns color 2 Red

set nf [open P7_DropTail_14IT069.nam w]

$ns namtrace-all $nf

set tf [open P7_DropTail_14IT069.tr w]

$ns trace-all $tf

#Define a 'finish' procedure

proc finish {} {

 global ns nf

 $ns flush-trace

 #Close the NAM trace file

Run a set of simulations using B=10 Mbps, D=10 ms, Q= 20 and draw xgraph of the following

advertised windows:

AW1=20, AW2=30

AW1=50, AW2=50

AW1=20, AW2=80

Consider the queue type = Drop tail

IT 344 Computer Network 5th Semester

18

 close $nf

 #Execute NAM on the trace file

 exec nam P7_DropTail_14IT069.nam &

 exec awk -f DropPacket.awk P7_DropTail_14IT120.tr &

 exit 0

}

#Create four nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

#Create links between the nodes

$ns duplex-link $n0 $n2 10Mb 10ms DropTail

$ns duplex-link $n1 $n2 10Mb 10ms DropTail

$ns duplex-link $n2 $n3 5Mb 10ms DropTail

#Set Queue Size of link (n2-n3)

$ns queue-limit $n2 $n3 20

#Give node position (for NAM)

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

#Monitor the queue for link (n2-n3). (for NAM)

$ns duplex-link-op $n2 $n3 queuePos 0.5

#window

#set aw1 20

#set aw2 30

#Setup a TCP connection

set tcp0 [new Agent/TCP]

$tcp0 set class_ 2

Agent/TCP set window_ $aw1

$tcp0 set window_ $aw1

$ns attach-agent $n0 $tcp0

set ftp0 [new Application/FTP]

$ftp0 attach-agent $tcp0

IT 344 Computer Network 5th Semester

19

$ftp0 set type_ FTP

$ftp0 set packetSize_ 1000

set sink3 [new Agent/TCPSink]

$ns attach-agent $n3 $sink3

$ns connect $tcp0 $sink3

$tcp0 set fid_ 1

set tcp1 [new Agent/TCP]

$tcp1 set class_ 2

Agent/TCP set window_ $aw2

$tcp1 set window_ $aw2

$ns attach-agent $n1 $tcp1

set ftp1 [new Application/FTP]

$ftp1 attach-agent $tcp1

$ftp1 set type_ FTP3

$ftp1 set packetSize_ 1000

set sink4 [new Agent/TCPSink]

$ns attach-agent $n3 $sink4

$ns connect $tcp1 $sink4

$tcp1 set fid_ 2

#Schedule events for the CBR and FTP agents

$ns at 0.1 "$ftp0 start"

$ns at 9.0 "$ftp0 stop"

$ns at 0.2 "$ftp1 start"

$ns at 9.0 "$ftp1 stop"

#Call the finish procedure after 5 seconds of simulation time

$ns at 10 "finish"

puts "FTP packet size : [$ftp0 set packetSize_]"

#Run the simulation

$ns run

IT 344 Computer Network 5th Semester

20

Topological scenario using NS-3

Practical: 4

AIM:-

Briefing of Network Simulator

 Introduction , Features and Network supported by NS3 and platform required to run Network

Simulator

 the waf build system

 Backend Environment of Network Simulator

 Installation steps of NS-3 in Ubuntu 14.04 or 16.04 LTS

 Installation and configuration of NetAnim

A comparison of ns-2 and ns-3(From Opensource)

ns-2 is network simulator version 2 and ns-3 is network simulator version 3. This wordplay somehow

suggests that ns-3 is merely the next version of ns-2, a very common misconception held by many.

There is nothing in common between ns-2 and ns-3 except that both are network simulators. ns-2 can

act only as a simulator, whereas ns-3 has the ability to act as a simulator as well as an emulator. One

tough decision made by the ns-3 development team was not to make ns-3 backward compatible with

ns-2. If ns-3 was backward compatible with ns-2, it might have become more popular. But then the

main advantage of ns-3 is that with freshly written code it has been possible to create a new core

architecture capable of supporting long term development. So I believe the decision to scrap backward

compatibility with ns-2 will benefit ns-3 in the long run.

Even though the cores of both ns-2 and ns-3 are in C++, the ns-2 source code didn’t have much impact

IT 344 Computer Network 5th Semester

21

on the development of the ns-3 source code. Another implementation level difference between ns-2

and ns-3 is regarding the binding language. The binding language (scripting language) associated with

ns-2 is OTcl, whereas for ns-3, it is Python. With today’s faster computers, it is not mandatory to have

a separate scripting language to save compilation time. So in ns-3, the use of Python scripting is limited

or can be avoided altogether. The dependence on a bi-language platform is another difficulty while

learning ns-2, because half your time is spent on understanding the binding between the compiled

hierarchy (C++ code) and the interpreted hierarchy (OTcl code). This is no longer a problem with ns-

3 because C++ alone is sufficient to simulate different networking scenarios.

Another major difference between ns-2 and ns-3 is the way they have reached their present states, over

a period of time. The difference is that ns-2 is software that has evolved, whereas ns-3 is planned

software. Let me explain. REAL simulator was initially a single persons venture and later on, more

code was added to it to create ns-1. Then ns-1 was remodeled and modified to ns-2. In the beginning,

nobody had any idea about the eventual fate of ns-2. Source code was added, bugs were fixed, patches

were released and, eventually, the present day ns-2 evolved. But with ns-3, this process was altogether

different. ns-3 was developed with clear goals and deadlines in mind. Consider the fact that any planned

software worth its salt ought to have a mascot or an emblem, but you can’t find one for ns-2. Figure 2

shows the emblem for ns-3. So the moral of the story is, Eventually planned software is going to be far

more useful than software evolved over time. Yes, you have to trust me on this one—ns-3 is much

better than ns-2. Moreover, nowadays ns-2 is only lightly maintained whereas ns-3 is maintained very

fervently. To confirm this fact, please check the mailing list of network simulator (ns); topics related

to ns-2 are mostly ignored whereas ns-3 topics often lead to heated debates.

Prerequisite packages for Linux are as follows:
1. 1.Minimal requirements for Python: gcc g++ python

2. Debugging and GNU Scientific Library (GSL) support: gdbpython-dev

3. valgrind gsl-bin libgsl0-dev libgsl0ldbl Network Simulation Cradle (nsc): flex bison

4. Reading pcap packet traces: tcpdump

5. 4.Database support for statistics framework: sqlite sqlite3

6. Xml-based version of the config store: libxml2

7. 6.A GTK-based configuration system: libgtk2.0-0

8. Experimental with virtual machines and ns-3: vtun lxc

Detail steps are as follows:

1. sudo apt-get update / dnf update

2. sudo apt-get upgrade / dnf upgrade

3. Once ubuntu/fedora is installed run following command opening the terminal(ctrl+alt+T)

window.

IT 344 Computer Network 5th Semester

22

4. To install prerequisites dependancy packages- Type the following command in terminal

window.

sudo apt-get/ dnf install gcc g++ python python-dev mercurial bzr gdb valgrind gsl-bin

libgsl0-dev libgsl0ldbl flex bison tcpdump sqlite sqlite3 libsqlite3-dev libxml2 libxml2-dev

libgtk2.0-0 libgtk2.0-dev uncrustify doxygen graphviz imagemagick texlive texlive-latex-

extra texlive-generic-extra texlive-generic-recommended texinfo dia texlive texlive-latex-extra

texlive-extra-utils texlive-generic-recommended texi2html python-pygraphviz python-kiwi

python-pygoocanvas libgoocanvas-dev python-pygccxml

5. After downloading NS3 on the drive, extract all the files in the NS3 folder, which you have

created.

6. Then you can find build.py along with other files in NS3 folder. Then to build the examples in

ns-3 run :

./build.py --enable-examples –enable-tests

If the build is successful then it will give output

"Build finished successfully".

7. Now run the following command on the terminal window,to configure with waf(build tool)

./waf -d debug --enable-examples --enable-tests configure

To build with waf(optional)

./waf

8. To test everything allright run the following command on the terminal window,

./test.py

If the tests are ok the installation is done

9. Now after installing ns3 and testing it run some programs first to be ns3 user:

make sure you are in directory where waf script is available then run

OR

sudo apt-get install gcc g++ python python-dev mercurial qt4-dev-tools tcpdump wireshark

gnuplot

Go to following link to download ns-allinone-3.20 tarball:

https://www.nsnam.org/release/ns-allinone-3.20.tar.bz2

cd Home

tar xjf ns-allinone-3.20.tar.bz2

Go in ns-allinone-3.20 folder and give the following command for installation:

./build.py --enable-examples --enable-tests

Go to ns-allinone-3.20/ns-3.20 folder and give the following directory:

IT 344 Computer Network 5th Semester

23

./test.py -c core

Go to ns-allinone-3.20/netanim-3.105 and give the following command:

./NetAnim

Practical: 5

AIM :-

Node
Because in any network simulation, we will need nodes. So ns-3 comes with NodeContainer that you

can use to manage all the nodes (Add, Create, Iterate, etc.).

// Create two nodes to hold.

NodeContainer nodes;

nodes.Create (2);

Channel and NetDevice
In the real world, they correspond to network cables (or wireless media) and peripheral cards (NIC).

Typically these two things are intimately tied together. In the first example, we are

usingPointToPointHelper that wraps the Channel and NetDevice.

// Channel: PointToPoint, a direct link with `DataRate` and `Delay` specified.

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

Then we need to install the devices. The internal of Install is actually more complicated, but for now,

let’s just skip the magic behind the scene.

// NetDevice: installed onto the channel

NetDeviceContainer devices;

devices = pointToPoint.Install (nodes);

Design simple program for two nodes client server wired topology and analyze behavior of this

topology by changing data rate and delay.(Point – to - Point)

IT 344 Computer Network 5th Semester

24

Protocols
Internet and IPv4. Since Internet is the current largest network to study, ns-3 has a particular focus on

it. The InternetStackHelper will install an Internet Stack (TCP, UDP, IP, etc.) on each of the nodes in

the node container.

// Protocol Stack: Internet Stack

InternetStackHelper stack;

stack.Install (nodes);

To assign IP addresses, use a helper and set the base. The low level ns-3 system actually remembers

all of the IP addresses allocated and will generate a fatal error if you accidentally cause the same

address to be generated twice.

// Since IP Address assignment is so common, the helper does the dirty work!

// You only need to set the base.

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");

// Assign the address to devices we created above

Ipv4InterfaceContainer interfaces = address.Assign (devices);

Applications
Every application needs to have Start and Stop function so that the simulator knows how to schedule

it. Other functions are application-specific. We will use UdpEchoServer and UdpEchoClientfor now.

// Application layer: UDP Echo Server and Client

// 1, Server:

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));

serverApps.Start (Seconds (1.0));

serverApps.Stop (Seconds (10.0));

// 2, Client:

UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);

echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Simulation
// Start Simulation

Simulator::Run ();

Simulator::Destroy ();

return 0;

CODE
#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

IT 344 Computer Network 5th Semester

25

int

main (int argc, char *argv[])

{

Time::SetResolution (Time::NS);

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);

LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

NodeContainer nodes;

nodes.Create (2);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer devices;

devices = pointToPoint.Install (nodes);

InternetStackHelper stack;

stack.Install (nodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interfaces = address.Assign (devices);

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));

serverApps.Start (Seconds (1.0));

serverApps.Stop (Seconds (10.0));

UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);

echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Simulator::Run ();

Simulator::Destroy ();

return 0;

Practical: 6

AIM :-

Program in NS3 for connecting three nodes considering one node as a central node and generate

trace file.

CODE

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

IT 344 Computer Network 5th Semester

26

#include "ns3/point-to-point-module.h"

#include "ns3/applications-module.h"

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

int

main (int argc, char *argv[])

{

Time::SetResolution (Time::NS);

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);

LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

NodeContainer nodes;

nodes.Create (3);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer devices, devices1;

devices = pointToPoint.Install (nodes.get(0),nodes.get(1));

devices1 = pointToPoint.Install (nodes.get(2),nodes.get(1));

InternetStackHelper stack;

stack.Install (nodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer interfaces = address.Assign (devices);

Ipv4InterfaceContainer interfaces1 = address.Assign (devices1);

UdpEchoServerHelper echoServer (90);

ApplicationContainer serverApps = echoServer.Install (nodes.Get (1));

serverApps.Start (Seconds (1.0));

serverApps.Stop (Seconds (10.0));

UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 90);

echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (nodes.Get (0));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

UdpEchoClientHelper echoClient (interfaces1.GetAddress (1), 90);

echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps1 = echoClient.Install (nodes.Get (2));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Simulator::Run ();

Simulator::Destroy ();

return 0;

IT 344 Computer Network 5th Semester

27

Practical: 7

AIM :-

Program in NS3 to implement star topology and generate trace file as well as animation file.

CODE

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/netanim-module.h"

#include "ns3/internet-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/applications-module.h"

#include "ns3/point-to-point-layout-module.h"

// Network topology (default)

//

// n2 n3 n4 .

// \ | / .

// \|/ .

// n1--- n0---n5 .

// /|\ .

// / | \ .

// n8 n7 n6 .

//

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("Star");

int

main (int argc, char *argv[])

{

//

// Set up some default values for the simulation.

//

Config::SetDefault ("ns3::OnOffApplication::PacketSize", UintegerValue

(137));

// ??? try and stick 15kb/s into the data rate

Config::SetDefault ("ns3::OnOffApplication::DataRate", StringValue

("14kb/s"));

//

// Default number of nodes in the star. Overridable by command line argument.

//

uint32_t nSpokes = 8;

CommandLinecmd;

A Star Network Topology is best suited for smaller networks and works efficiently when there is

limited number of nodes. One has to ensure that the hub or the central node is always working and

extra security features should be added to the hub because it s the heart of the network.

IT 344 Computer Network 5th Semester

28

cmd.AddValue ("nSpokes", "Number of nodes to place in the star", nSpokes);

cmd.Parse (argc, argv);

NS_LOG_INFO ("Build star topology.");

PointToPointHelperpointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

PointToPointStarHelper star (nSpokes, pointToPoint);

NS_LOG_INFO ("Install internet stack on all nodes.");

IT 344 Computer Network 5th Semester

29

InternetStackHelper internet;

star.InstallStack (internet);

NS_LOG_INFO ("Assign IP Addresses.");

star.AssignIpv4Addresses (Ipv4AddressHelper ("10.1.1.0", "255.255.255.0"));

NS_LOG_INFO ("Create applications.");

//

// Create a packet sink on the star "hub" to receive packets.

//

uint16_t port = 50000;

Address hubLocalAddress (InetSocketAddress (Ipv4Address::GetAny (), port));

PacketSinkHelper packetSinkHelper ("ns3::TcpSocketFactory", hubLocalAddress);

ApplicationContainer hubApp = packetSinkHelper.Install (star.GetHub ());

hubApp.Start (Seconds (1.0));

hubApp.Stop (Seconds (10.0));

//

// Create OnOff applications to send TCP to the hub, one on each spoke node.

//

OnOffHelper onOffHelper ("ns3::TcpSocketFactory", Address ());

onOffHelper.SetAttribute ("OnTime", StringValue

("ns3::ConstantRandomVariable[Constant=1]"));

onOffHelper.SetAttribute ("OffTime", StringValue

("ns3::ConstantRandomVariable[Constant=0]"));

ApplicationContainer spokeApps;

for (uint32_t i = 0; i < star.SpokeCount (); ++i)

{

AddressValue remoteAddress (InetSocketAddress (star.GetHubIpv4Address (i),

port));

onOffHelper.SetAttribute ("Remote", remoteAddress);

spokeApps.Add (onOffHelper.Install (star.GetSpokeNode (i)));

}

spokeApps.Start (Seconds (1.0));

spokeApps.Stop (Seconds (10.0));

NS_LOG_INFO ("Enable static global routing.");

//

// Turn on global static routing so we can actually be routed across the

star.

//

Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

NS_LOG_INFO ("Enable pcap tracing.");

//

// Do pcap tracing on all point-to-point devices on all nodes.

//

pointToPoint.EnablePcapAll ("star");

NS_LOG_INFO ("Run Simulation.");

Simulator::Run ();

Simulator::Destroy ();

NS_LOG_INFO ("Done.");

return 0;

IT 344 Computer Network 5th Semester

30

Practical: 8

AIM :-

Program in NS3 to implement a bus topology and generate trace file as well as graph using gnu

plot.

CODE

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/csma-module.h"

#include "ns3/internet-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/applications-module.h"

#include "ns3/ipv4-global-routing-helper.h"

// Default Network Topology

// 10.1.1.0

// n0 -------------- n1 n2 n3 n4

// point-to-point | | | |

// ================

// LAN 10.1.2.0

using namespace ns3;

NS_LOG_COMPONENT_DEFINE ("SecondScriptExample");

int

main (int argc, char *argv[])

{

bool verbose = true;

uint32_t nCsma = 3;

CommandLine cmd;

cmd.AddValue ("nCsma", "Number of \"extra\" CSMA nodes/devices", nCsma);

cmd.AddValue ("verbose", "Tell echo applications to log if true", verbose);

cmd.Parse (argc,argv);

IT 344 Computer Network 5th Semester

31

if (verbose)

{

LogComponentEnable ("UdpEchoClientApplication", LOG_LEVEL_INFO);

LogComponentEnable ("UdpEchoServerApplication", LOG_LEVEL_INFO);

}

nCsma = nCsma == 0 ? 1 : nCsma;

NodeContainer p2pNodes;

p2pNodes.Create (2);

NodeContainer csmaNodes;

csmaNodes.Add (p2pNodes.Get (1));

csmaNodes.Create (nCsma);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("5Mbps"));

pointToPoint.SetChannelAttribute ("Delay", StringValue ("2ms"));

NetDeviceContainer p2pDevices;

p2pDevices = pointToPoint.Install (p2pNodes);

CsmaHelper csma;

csma.SetChannelAttribute ("DataRate", StringValue ("100Mbps"));

csma.SetChannelAttribute ("Delay", TimeValue (NanoSeconds (6560)));

NetDeviceContainer csmaDevices;

csmaDevices = csma.Install (csmaNodes);

InternetStackHelper stack;

stack.Install (p2pNodes.Get (0));

stack.Install (csmaNodes);

Ipv4AddressHelper address;

address.SetBase ("10.1.1.0", "255.255.255.0");

Ipv4InterfaceContainer p2pInterfaces;

p2pInterfaces = address.Assign (p2pDevices);

address.SetBase ("10.1.2.0", "255.255.255.0");

IT 344 Computer Network 5th Semester

32

Ipv4InterfaceContainer csmaInterfaces;

csmaInterfaces = address.Assign (csmaDevices);

UdpEchoServerHelper echoServer (9);

ApplicationContainer serverApps = echoServer.Install (csmaNodes.Get (nCsma));

serverApps.Start (Seconds (1.0));

serverApps.Stop (Seconds (10.0));

UdpEchoClientHelper echoClient (csmaInterfaces.GetAddress (nCsma), 9);

echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

echoClient.SetAttribute ("Interval", TimeValue (Seconds (1.0)));

echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

ApplicationContainer clientApps = echoClient.Install (p2pNodes.Get (0));

clientApps.Start (Seconds (2.0));

clientApps.Stop (Seconds (10.0));

Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

pointToPoint.EnablePcapAll ("second");

csma.EnablePcap ("second", csmaDevices.Get (1), true);

Simulator::Run ();

Simulator::Destroy ();

return 0;

}

Practical: 9

AIM :-

Program in NS3 for connecting multiple routers and nodes and building a hybrid topology and

generate trace file as well as graph using gnuplot.

Installing NetAnim

The website:

http://www.nsnam.org/wiki/index.php/NetAnim

1. Install Mercurial:

apt−get/dnf install mercurial

2. Install QT4 development package:

apt−get/dnf install qt4−dev−tools

3. You can use Synaptic too, to install both the above packages.

4. Download NetAnim: hg clone http :// code .nsnam. org/netanim

5. Build NetAnim:

cd netanim

make clean qmake NetAnim. pro make

IT 344 Computer Network 5th Semester

33

Compiling code with NetAnim

So you will have to make the following changes to the code, in order to view the animation on

NetAnim.

#include " ... "

#include "ns3/netanim−module .h" //1 Include. . .

int main (int argc , char ∗argv [])

{ std : : string animFile = "somename. xml"; //2 Name of f i l e for animation

. . .

AnimationInterface anim (animFile); //3 Animation interface

Simulator : : Run (); Simulator : : Destroy (); return 0;

}

4.1 To run the code:

1. Move the waf , waf.bat , wscript and wutils.py les in to the scratch folder (~/ns-allinone-

3.24/ns-3.24/scratch/).

2. Move the example code to the scratch folder and make the changes required for NetAnim, as

shown above.

3. Now cd to the scratch folder (cd ~/ns-allinone-3.24/ns-3.24/scratch/).

4. Run the code using the command:

./ waf −−run <filename>

Note: < lename> should not contain the extension .cc

4.2 To visualize on NetAnim:

1. cd to the netanim folder (cd ~/netanim/).

2. Run Netanim:

./NetAnim

3. Include the .xml le generated in the ns-3.24 folder (~/ns-allinone-3.17/ns3.24/).

